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Figure 1: (left) contour-based projection and network; (right) depth-based projection and network

Summary

1. An novel approach for 3D object classification which unifies two key
components:

•a spherical representation exploiting both depth variation and contour
information which can capture geometric details and data dependencies
across the entire object.

•deep neural networks incorporating large-scale labeled images for
training to classify spherical representations of 3D objects.

Challenges

1. Limitations of previous works:
•For 3D convolutional methods, the resolution of a 3D convolutional
neural network is usually very coarse;

•For all 3D-based methods, the number of available training data is
limited;

•For image-based methods, most do not capture the dependencies
between views.
Our spherical projections combine key advantages of these two main-
stream 3D classification methods.

Depth-based Projection
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(a)Depth-based Projection Method
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(b)Cylindrical Depth-based Projection

Figure 2: Details on Depth-based Projection

•The left Figure indicates that each point is recorded as the distance to
the first hitting point. Otherwise, the distance is set to be zero.

•The right Figure indicates the cylindrical convolution.
We first compute depth values for vertices of a semi-regular quad-mesh
whose axis aligns with the longitude and latitude

(cos(θi) cos(φj), cos(θi) sin(φj), sin(θi))

θi = 180◦ · i
m

, φj = 360◦ · j
n

,
0 ≤ i ≤ m− 1
0 ≤ j ≤ n− 1

(1)

Then, we generate the depth value of other points on the sphere by linear
interpolation. Given a point with spherical coordinate (θ, φ), where θi ≤
θ ≤ θi+1, φj ≤ φ ≤ φj+1, its depth value is given by

d =(1 − tij)
(
(1 − sij)dij + sijdi,j+1

)

+ tij
(
(1 − sij)di+1,j + sijdi+1,j+1

)
. (2)

Finally, as in the Figure(right) of depth-projection, we proceed to generate
cylindrical strips from the depth projection described above. We first use
the strip covering the following area

(cos(θih) cos(φjh), cos(θih) sin(φjh), sin(θih))

θih = 120◦ · ih
mh

+ 30◦, φjh = 360◦ · jh
nh

,
0 ≤ ih ≤ mh − 1,
0 ≤ jh ≤ nh − 1.

(3)

Since regions of high latitude suffer from severe distortion, we eliminate
them by setting θih from 30◦ to 150◦. To utilize information form high
latitude regions for classification, we then use the following strip

(cos(δkv) cos(θiv) sin(φjv) − sin(δkv) sin(θiv),
cos(δkv) sin(θiv) + sin(δkv) cos(θiv) sin(φjv),
cos(θiv) cos(φjv))

θiv = 360◦ · iv
lvmv

+ 90◦ − 180◦

lv
, φjv = 180◦ · jv

nv
, δkv = 360◦ · jv

lv
0 ≤ iv ≤ mv − 1, 0 ≤ jv ≤ nv − 1, 0 ≤ kv ≤ lv − 1

(4)

Contour-based Projection

As shown in Figure(left) of contour-based netwrok, contour-based projec-
tion shoots a 3x12 grid of images of the input object from 36 view points.
The locations are φj = 0◦, 30◦, · · · , 330◦, θi = −60◦, 0◦, 60◦. The up-right
orientation of the camera always points to the north-pole. The viewing
angle of each image is 45◦. The resolution of each image is 224x224. In
our experiments, we have varied the value of m and found that m = 12
provides a good trade-off between minimizing the number of views and
ensuring that the resulting projections are approximately invariant to ro-
tating the input object.

Experiment Setup

•Datasets: ModelNet40, ShapeNetCore
•Parameter selection: cross-validation by jointly assessing
•Methods to compare with: Image-based methods: MVCNN,
MVCNN-MultiRes; 3D-based methods: 3D ShapeNets, Voxnet,
Volumetric CNN, OctNet; combined methods: FusionNet. All of these
methods use the upright orientation but do not use the front
orientation.

Results

•Accuracy of our approaches and the various baseline methods on ModelNet40 and
ShapeNetCore and two curated subsets.

Method ModelNet40 ShapeNetCore ModelNet40-SubI ShapeNetCore-SubI
3D Shapenets 85.9 na 83.33 na

Voxnet 87.8 na 85.99 na
FusionNet 90.80 na 89.54 na

Volumetric CNN 89.9 na 88.65 na
MVCNN 92.31 88.93 91.22 88.64

MVCNN-MultiRes 93.8 90.01 92.60 90.00
OctNet 87.83 88.03 86.45 87.85

depth-base pattern 91.36 89.45 90.25 89.13
contour-based pattern 93.31 90.49 92.20 90.80

overall pattern 94.24 91.00 93.09 91.22

Classwise Comparison

•Accuracy of Each Class For Different Projection on ModelNet40
Class Name Depth-Based Contour-Based MVCNN Class Name Depth-Based Contour-Based MVCNN

bowl 100.00 95.00 85.00 stool 75.00 75.00 75.00
bookshelf 99.00 99.00 94.00 tent 95.00 95.00 95.00

cone 100.00 100.00 95.00 toilet 100.00 100.00 100.00
table 89.00 84.00 84.00 xbox 80.00 80.00 80.00
vase 82.00 85.00 77.00 car 99.00 100.00 100.00

tv_stand 85.00 90.00 81.00 guitar 98.00 100.00 99.00
dresser 89.53 89.53 86.05 monitor 97.00 99.00 99.00
bottle 98.00 96.00 96.00 plant 85.71 89.80 87.76
sofa 98.00 99.00 97.00 range_hood 93.00 97.00 96.00

airplane 100.00 100.00 100.00 night_stand 75.58 86.05 80.23
bathtub 94.00 96.00 94.00 sink 85.00 85.00 90.00
bed 100.00 100.00 100.00 piano 91.00 96.00 97.00
bench 80.00 80.00 80.00 mantel 93.00 97.00 100.00
chair 98.00 99.00 98.00 curtain 85.00 95.00 95.00
desk 86.05 87.21 86.05 lamp 75.00 80.00 85.00
door 100.00 100.00 100.00 cup 55.00 80.00 70.00

glass_box 97.00 97.00 97.00 flower_pot 15.00 15.00 30.00
keyboard 100.00 100.00 100.00 wardrobe 65.00 90.00 90.00
laptop 100.00 100.00 100.00 radio 65.00 95.00 95.00
person 100.00 95.00 100.00 stairs 70.00 100.00 100.00

Running Time Analysis

•Running Time of All the methods on ModelNet40 and ShapeNetCore
Method ModelNet40 ShapeNetCore

Rendering Inference Training Rendering Inference Training
Depth 0.92s 0.043s 252m 1.06s 0.043 272m
Contour 1.17s 0.418s 371m 1.28s 0.418s 442m

Effect of Pre-training

•Accuracy Before and After Pre-training on ModelNet40
Method Before Pre-training After Pre-training

Accuracy (class) Accuracy (instance) Accuracy (class) Accuracy (instance)
MVCNN 82.15 87.15 90.35 92.31

MVCNN-MultiRes 88.12 91.20 91.40 93.80
depth-base pattern 80.44 86.09 87.32 91.36

contour-based pattern 88.33 91.48 91.16 93.31
overall pattern 88.53 91.77 91.56 94.24

•Accuracy Before and After Pre-training on ShapeNetCore
Method Before Pre-training After Pre-training

Accuracy (class) Accuracy (instance) Accuracy (class) Accuracy (instance)
MVCNN 67.84 84.55 78.79 88.93

MVCNN-MultiRes 75.34 88.4 79.01 90.01
depth-base pattern 70.55 85.15 78.84 89.45

contour-based pattern 74.52 88.54 79.38 90.49
overall pattern 75.60 88.87 80.38 91.00

Number of Views

•Accuracy w.r.t Number of Views for Depth and Contour Pattern on ModelNet40 and
ShapeNetCore

Pattern Number of Views ModelNet40 ShapeNetCore

depth-based
6 90.87 88.95
24 91.02 89.23
12 91.36 89.45

contour-based
6 92.26 89.23
24 93.12 90.36
12 93.31 90.49

Elevation Degree Variation

•Accuracy w.r.t Elevation degree of the strip parallel to the latitude

Elevation Degree
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