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Motivation Large Scale Image Retrieval

Image Retrieval

Nearest Neighbor (NN) similarity retrieval
Database: X = {x1, . . . ,xN} and Query: q
NN: NN (q) = minx∈Xd (x,q)
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Figure: Image Retrieval: Similarity Retrieval in Hamming Space.
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Motivation Large Scale Image Retrieval

Hashing Methods

generate image
descriptors

Approximate
Nearest
Neighbor
Retrieval

-1

1generate image
hash codes

SIFT
DeCAF

Superiorities
Memory

128-d float : 512 bytes → 16 bytes

1 billion items : 512 GB → 16 GB

Time
Computation: x10 - x100 faster

Transmission (disk / web): x30
faster

Applications
Approximate nearest neighbor
search

Compact representation, Feature
Compression for large datasets

Distribute and transmit data
online

Construct index for large-scale
database
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Motivation Transfer Hamming Space Retrieval

Traditional VS. Transfer

traditional image retrieval

transfer image retrieval

image domain with 
known similarity relationship

image domain with 
known similarity relationship

image domain with 
unknown similarity relationship

Z. Cao et al. (Tsinghua University) TAH AAAI 2018 4 / 20



Motivation Transfer Hamming Space Retrieval

Challenges

The hash model trained on the source domain cannot work well
on the target domain due to the large distribution gap;
The domain gap makes it difficult to concentrate the database
points to be within a small Hamming ball.

Figure: Concentration Problem in Transfer Hamming Space Retrieval
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Method Model

Network Architecture
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Method Loss

Hash Function Learning

image domain with 
known similarity relationship

image domain with 
unknown similarity relationship

Logarithm Maximum a Posteriori estimation

Given the set of pairwise similarity labels S = {sij}, the logarithm
Maximum a Posteriori (MAP) estimation of training hash codes
Hx = [hx

1 , . . . ,h
x
n ] can be defined as

log p
(
Hx |S

)
∝ log p

(
S|Hx)p

(
Hx)

=
∑

sij∈S
log p

(
sij |hx

i ,h
x
j

)
p
(
hx

i
)

p
(
hx

j

)
, (1)

where p(S|Hx ) is likelihood function, and p(Hx ) is prior distribution.
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Method Loss

Hash Function Learning

Conditional Probability

For each pair of points xi and xj , p(sij |hx
i ,h

x
j ) is the conditional

probability of their relationship sij given their hash codes hx
i and hx

j ,
which can be defined using the pairwise logistic function,

p
(
sij |hx

i ,h
x
j

)
=

σ
(
sim

(
hx

i ,h
x
j

))
, sij = 1

1− σ
(
sim

(
hx

i ,h
x
j

))
, sij = 0

= σ
(
sim

(
hx

i ,h
x
j

))sij
(
1− σ

(
sim

(
hx

i ,h
x
j

)))1−sij
,

(2)

where sim
(
hx

i ,h
x
j

)
is the similarity function of code pairs hx

i and
hx

j and σ (x) is the probability function.
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Method Loss

Hash Function Learning
Similarity Function and Probability Function

Previous methods [12, 2] usually use inner product
〈

hx
i ,h

x
j

〉
as similarity

function and σ (x) = 1/(1 + e−αx ) as probability function.
However, they cannot force the Hamming distance between codes of
similar data to be smaller than 2 since the probability cannot discriminate
Hamming distances smaller than b/2 sufficiently.
Thus, we proposes a new similarity function sim

(
hx

i ,h
x
j

)
= b

1+
∥∥hx

i −hx
j

∥∥2

and the corresponding probability function is defined as σ (x) = tanh (αx).
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Method Loss

Hash Function Learning

Prior
Similar to previous work [11, 6, 12], defining that hx

i = sgn(zx
i )

where zx
i is the activation of hash layer, we relax binary codes to

continuous codes since discrete optimization of Equation (1) with
binary constraints is difficult and adopt a quantization loss function
to control quantization error. Specifically, we adopt the prior for
quantization of [12] as

p
(
zx

i
)

=
1
2ε

exp
(
−
|zx

i | − 1
ε

)
(3)

where ε is the parameter of the exponential distribution.
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Method Loss

Hash Function Learning

Optimization Poblem
By substituting Equations (2) and (3) into the MAP estimation in
Equation (1), we achieve the optimization problem,

min
θ

J = L + λQ, (4)

where λ is the trade-off parameter and θ is network parameters.

L =
∑

sij∈S
log

1 + exp

 b

1 +
∥∥∥zx

i − zx
j

∥∥∥
2

− sij
b

1 +
∥∥∥zx

i − zx
j

∥∥∥
2

(5)

Q =
∑

sij∈S

b∑
t=1

(
− log cosh

(
|zx

it | − 1
)
− log cosh

(
|zx

jt | − 1
))

(6)
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Method Loss

Homogeneous Distribution Alignment

image domain with 
known similarity relationship

image domain with 
unknown similarity relationship

Domain adversarial networks have been successfully applied to
transfer learning [3, 9] by extracting features that can reduce the
distribution shift between the source and the target domain.
We reduce the distribution shifts between the source and the target
domain by adversarial learning. The adversarial learning procedure is
a two-player game, where the first player is the domain discriminator
Gd trained to distinguish the source domain from the target domain,
and the second is the base hashing network Gf fine-tuned
simultaneously to confuse the domain discriminator.
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Method Loss

Domain Distribution Alignment

Domain Distribution Alignment with Adversarial Nertwork
To extract domain-invariant hash codes h, the parameters θf of
deep hashing network Gf are learned by maximizing the loss of
domain discriminator Gd , while the parameters θd of domain
discriminator Gd are learned by minimizing the loss of the domain
discriminator. The objective of domain adversarial network is the
functional:

D
(
θf , θy , θd

)
=

1
n + m

∑
vi∈X∪Y

Ld (Gd (Gf (vi )) ,di ), (7)

where Ld is the cross-entropy loss and di is the domain label of
data point vi . di = 1 means vi belongs to target domain and di = 0
means vi belongs to source domain.
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Method Loss

Transfer Adversarial Hashing

Unified optimization problem
The overall loss by integrating Equations (4) and (7),

C = J − µD, (8)

where µ is a trade-off parameter between the MAP loss J and
adversarial learning loss D. The optimization of this loss is as
follows. After training convergence, the parameters θ̂f , θ̂y , θ̂d will
deliver a saddle point of the functional (8):

(θ̂f , θ̂y ) = arg min
θf ,θy

C
(
θf , θy , θd

)
,

(θ̂d ) = arg max
θd

C
(
θf , θy , θd

)
.

(9)
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Experiments Setup

Experiments Setup

Datasets: ImageNet, NUS-WIDE and MS-COCO
Protocols: Mean Average Precision (MAP), Precision-Recall
curves and Precision all within Hamming radius 2
Parameter selection: cross-validation by jointly assessing
Methods to compare with: unsupervised methods LSH [4], SH
[10], ITQ [5], supervised shallow methods KSH [7], SDH [8],
supervised deep single domain methods CNNH [11], DNNH [6],
DHN [12], HashNet [2] and supervised deep cross-domain
method THN [1].
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Experiments Results

Results and Discussion

Table: Mean Average Precision (MAP) of Hamming Ranking within Hamming
Radius 2 for Different Number of Bits on the Three Image Retrieval Tasks

Method
NUS-WIDE VisDA2017

synthetic → real real → synthetic
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

TAH 0.722 0.729 0.692 0.680 0.465 0.423 0.433 0.404 0.672 0.695 0.784 0.761
THN 0.671 0.676 0.662 0.603 0.415 0.396 0.228 0.127 0.647 0.687 0.664 0.532

HashNet 0.709 0.693 0.681 0.615 0.412 0.403 0.345 0.274 0.572 0.676 0.662 0.642
DHN 0.669 0.672 0.661 0.598 0.331 0.354 0.309 0.281 0.545 0.612 0.608 0.604

DNNH 0.568 0.622 0.611 0.585 0.241 0.276 0.252 0.243 0.509 0.564 0.551 0.503
CNNH 0.542 0.601 0.587 0.535 0.221 0.254 0.238 0.230 0.487 0.568 0.530 0.445
SDH 0.555 0.571 0.517 0.499 0.196 0.238 0.229 0.212 0.330 0.388 0.339 0.277
ITQ 0.498 0.549 0.517 0.402 0.187 0.175 0.146 0.123 0.163 0.193 0.176 0.158
SH 0.496 0.543 0.437 0.371 0.154 0.141 0.130 0.105 0.154 0.182 0.145 0.123

KSH 0.531 0.554 0.421 0.335 0.176 0.183 0.124 0.085 0.143 0.178 0.146 0.092
LSH 0.432 0.453 0.323 0.255 0.122 0.092 0.083 0.071 0.130 0.145 0.122 0.063
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Experiments Results

Results and Discussion
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Figure: The Precision-recall curve @ 64 bits and the Precision within
Hamming radius 2 of TAH and comparison methods on three tasks.
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Experiments Results

Empirical Analysis

TAH-t is the variant which uses the pairwise cross-entropy loss
introduced in DHN [12] instead of our pairwise t-distribution
cross-entropy loss
TAH-A is the variant removing adversarial learning module and trained
without using the unsupervised training data

Table: MAP within Hamming Radius 2 of TAH variants

Method
synthetic → real real → synthetic

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits
TAH-t 0.443 0.405 0.390 0.364 0.660 0.671 0.717 0.624
TAH-A 0.305 0.395 0.382 0.331 0.605 0.683 0.725 0.724
TAH 0.465 0.423 0.433 0.404 0.672 0.695 0.784 0.761
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Experiments Results

Empirical Analysis

Key Observations
TAH outperforms TAH-t by very large margins of 0.031 / 0.060 in
average MAP, which confirms that the pairwise t cross-entropy
loss learns codes within Hamming Radius 2 better than pairwise
cross-entropy loss.
TAH outperforms TAH-A by 0.078 / 0.044 in average MAP for
transfer retrieval tasks synthetic → real and real → synthetic.
This convinces that TAH can further exploit the unsupervised train
data of target domain to bridge the Hamming spaces of training
dataset (real/synthetic) and database (synthetic/real) and transfer
knowledge from training set to database effectively.
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Summary

Summary

We formally define a new transfer hashing problem for image
retrieval.
We propose a novel transfer adversarial hashing approach based
on a hybrid deep architecture.
We align different domains in Hamming space and concentrate
the hash codes to be within a small Hamming ball by Maximum a
Posteriori estimation with carefully designed similarity function and
probability function and adversarial learning.
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