
Partial Transfer Learning with Selective Adversarial Networks
Zhangjie Cao†, Mingsheng Long†, Jianmin Wang†, and Michael I. Jordan]

†KLiss, MOE; NEL-BDS; TNList; School of Software, Tsinghua University, China
]University of California, Berkeley, Berkeley, USA

Summary

I Partial transfer learning: Deep learning across domains with
different label spaces Cs ⊃ Ct

I Two main challenges:
I Positive transfer across domains in shared label space PCt 6= QCt
I Negative transfer across domains in outlier label space PCs\Ct 6= QCt

I State-of-the-art results on partial transfer learning datasets.

I Main contributions:
I Propose a multi-adversarial networks architecture to enable class-wise

domain distribution matching;
I Develop a weighting mechanism with instance and class level weight to

avoid negative transfer.

I Code available @ https://github.com/thuml/SAN

Partial Transfer Learning

I Deep learning across domains with different label spaces
Cs ⊃ Ct

I Positive transfer across domains in shared label space PCt 6= QCt
I Negative transfer across domains in outlier label space
PCs\Ct 6= QCt

++
++

+

+

+
+

+

+
+
+

+
++

+
++

+
+

++
+
++

source domain

target domain

soccer-ball

binoculars

soccer-ball

+sofa

binoculars

Partial Transfer Learning: How?

Song et al. Kernel Embeddings of Conditional Distributions. IEEE, 2013.
Goodfellow et al. Generative Adversarial Networks. NIPS 2014.

Kernel Embedding Adversarial Learning

 IEEE SIGNAL PROCESSING MAGAZINE [102] JULY 2013

embeddings of a joint distribution (,)P X Y and the product of its
marginals () (),P X P Y i.e., hsic (,) : .X Y C F FXY X Y

27n n= - 7
Similarly, this statistic also has advantages over the kde-based
statistic. We will further discuss these tests in the next section,
following our introduction of finite sample estimates of the
distribution embeddings and test statistics.

FINITE SAMPLE KERNEL ESTIMATOR
While we rarely have access to the true underlying distribution,

(),P X we can readily estimate its embedding using a finite sample
average. Given a sample { , , }D x xX m1 f= of size m drawn inde-
pendent and identically distributed (i.i.d.) from (),P X the empiri-
cal kernel embedding is

 () .m x1
X i

i

m

1
n z=

=

t / (4)

See Figure 3 for an illustration of the kernel embedding and its
empirical estimator. This empirical estimate converges to its pop-
ulation counterpart in RKHS norm, ,FX Xn n-t with a rate of

()O m (/)
p

1 2- [15], [16]. We note that this rate is independent of the
dimension of ,X meaning that statistics based on kernel embed-
dings circumvent the curse of dimensionality.

Kernel embeddings of joint distributions inherit the
previous two properties of general embeddings: injectivity

and easy empirical estimation. Given
m pairs of training examples DXY =
{(,), , (,)}x y x ym m1 1 f drawn i.i.d. from

(,),P X Y the covariance operator CXY
can then be estimated as

 () () .C m x y1
XY i i

i

m

1
7z z=

=

t / (5)

See Figure 4 for an illustration of the
kernel joint embedding and its empirical
estimator.

By virtue of the kernel trick, most of
the computation required for statistical
inference using kernel embeddings can
be reduced to the Gram matrix manipu-
lation. The entries in the Gram matrix K
correspond to the kernel value between
data points xi and ,x j i.e., (,),K k x xij i j=
and therefore its size is determined by
the number of data points in the sample
(similarly Gram matrix G has entries

(,)) .G k y yij i j= The size of the Gram
matrices is in general much smaller than
the dimension of the feature spaces
(which can be infinite). This enables effi-
cient nonparametric methods using the
kernel embedding representation. For
instance, the empirical mmd can be com-
puted using kernel evaluations,

mmd (,) () ()

((,) (,) (,)) .

P Q m x m y

m
k x x k y y k x y

1 1

1 2
,

F

i
i

m

i
i

m

i j i j i j
i j

m
1 1

2

2
1

z z= -

= + -

= =

=

\ / /

/

For comparison, the L2 distance between kernel density esti-
mates is

kde kde(() ())x x dx2-
X

l\ \#

j j(,) (,) (,) (,)

(,) (,)) ,

(k k k k

k k
m

x x x x y x y x

x x y x dx

1

2
,

m

i
i j

i

i j

2
1

= +

-

X =

u u u u

u u

/#

w h e r e kde () / (,)x m k x x1 ii
m

1=
=
u\ / a n d kde () /mx 1=l\

(,)k y xii
m

1=
u/ , respectively. Furthermore, it can be shown that a

two-sample test based on the L2 distance between kernel density
estimates has less power against local departures from the null
hypothesis than the mmd\ [19, Sec. 3.3], [19, Sec. 5], due to the
shrinking kernel bandwidth with increasing sample size. There
are also many domains such as strings and graphs [13] where
kernel methods can be used, but where probability densities may
not be defined. Finally, hyperparameters of the kernel func-
tions, such as the bandwidth v in the Gaussian kernel

v(),exp x x 2-- l can be chosen to maximize the test power,
and minimize the probability of Type II error in two-sample tests

[FIG3] Kernel embedding of a distribution and finite sample estimate.

Feature Space

P(X)

xi
X

E[z(X)]

z(xi)

z(xi)

nx
nxˆ

nx = E[z(X)] cnxˆ = /1
m

m

i = 1

[FIG4] Kernel embedding of a joint distribution and finite sample estimate.

Feature Space

ˆ z(yi) , z(xi)= /1
m

m

i = 1

CYX = E[z(Y)] , z(X)] cCYX

X

Y
P (Y, X)

CYX
ĈYX

z(yi) , z(xi)

E[z(Y)] , z(X)]

(xi, yi)

Selective Adversarial Networks

yf

Gd

Gd

CNNx

Gd

GRL

@Ly

@✓y

�@Ld

@✓f

@Ld

@✓d

Ly

Ld

^

1

2

K

Ldd̂

d̂

Ld

Ld

d̂

1

2

K

1

2

K@Lf

@✓f

back-propagation

Gf Gy

@Ly

@✓f

I f = Gf (x): feature extractor
I ŷ: predicted data label
I d̂: predicted domain label

I Gy , Ly : label predictor and loss
I G k

d , Lkd : domain discriminator
I GRL: gradient reversal layer

Weighting Mechanism and Loss

I Instance Weighting (IW): probability-weighted loss for G k
d , k = 1, . . . , |Cs|.

Class Weighting (CW): down-weigh G k
d , k = 1, . . . , |Cs| for outlier classes

Ld =
1

ns + nt

|Cs|∑
k=1


 1

nt

∑
xi∈Dt

ŷ ki

×
 ∑

xi∈(Ds∪Dt)

ŷ ki L
k
d

(
G k
d (Gf (xi)) , di

)
(1)

I Entropy (uncertainty) minimization: H (Gy (Gf (xi))) = −∑|Cs|k=1 ŷ
k
i log ŷ ki

E =
1

nt

∑
xi∈Dt

H (Gy (Gf (xi))) (2)

I Overall Loss C

C
(
θf , θy , θ

k
d ||Cs|k=1

)
=

1

ns

∑
xi∈Ds

Ly (Gy (Gf (xi)), yi) +
1

nt

∑
xi∈Dt

H (Gy (Gf (xi)))

− 1

ns + nt

|Cs|∑
k=1


 1

nt

∑
xi∈Dt

ŷ ki

× ∑
xi∈(Ds∪Dt)

ŷ ki L
k
d

(
G k
d (Gf (xi)) , di

)
(3)

(θ̂f , θ̂y) = arg min
θf ,θy

C
(
θf , θy , θ

k
d ||Cs|k=1

)
(θ̂1

d , ..., θ̂
|Cs|
d) = arg max

θ1d ,...,θ
|Cs |
d

C
(
θf , θy , θ

k
d ||Cs|k=1

) (4)

Experimental Results

Table: Accuracy (%) of partial transfer learning tasks on Office-31

Method
Office-31

A 31 → W 10 D 31 → W 10 W 31 → D 10 A 31 → D 10 D 31 → A 10 W 31 → A 10 Avg

AlexNet 58.51 95.05 98.08 71.23 70.6 67.74 76.87
DAN 56.52 71.86 86.78 51.86 50.42 52.29 61.62

RevGrad 49.49 93.55 90.44 49.68 46.72 48.81 63.11
RTN 66.78 86.77 99.36 70.06 73.52 76.41 78.82

ADDA 70.68 96.44 98.65 72.90 74.26 75.56 81.42

SAN-selective 71.51 98.31 100.00 78.34 77.87 76.32 83.73
SAN-entropy 74.61 98.31 100.00 80.29 78.39 82.25 85.64

SAN 80.02 98.64 100.00 81.28 80.58 83.09 87.27

Table: Accuracy (%) of partial transfer learning tasks on Caltech-Office and
ImageNet-Caltech

Method
Caltech-Office ImageNet-Caltech

C 256 → W 10 C 256 → A 10 C 256 → D 10 Avg I 1000 → C 84 C 256 → I 84 Avg

AlexNet 58.44 76.64 65.86 66.98 52.37 47.35 49.86
DAN 42.37 70.75 47.04 53.39 54.21 52.03 53.12

RevGrad 54.57 72.86 57.96 61.80 51.34 47.02 49.18
RTN 71.02 81.32 62.35 71.56 63.69 50.45 57.07

ADDA 73.66 78.35 74.80 75.60 64.20 51.55 57.88

SAN-selective 76.44 81.63 80.25 79.44 66.78 51.25 59.02
SAN-entropy 72.54 78.95 76.43 75.97 55.27 52.31 53.79

SAN 88.33 83.82 85.35 85.83 68.45 55.61 62.03

Number of Target Classes
101520253031

A
c
c
u
ra

c
y

40

50

60

70

80

90

100

RevGrad
SAN

(a) Accuracy w.r.t #Target Classes

Number of Iterations

500 3000 6000 9000 12000 15000

T
e

s
t

E
rr

o
r

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

SAN
DAN
RTN
RevGrad
AlexNet

(b) Test Error

Figure: Empirical analysis: (a) Accuracy by varying #target domain classes; (b)
Target test error.

-40 -20 0 20 40
-30

-20

-10

0

10

20

30

(a) DAN

-40 -20 0 20 40 60
-30

-20

-10

0

10

20

30

40

(b) RevGrad

-40 -20 0 20 40
-30

-20

-10

0

10

20

30

40

(c) RTN

-40 -20 0 20
-20

-10

0

10

20

30

40
source1
source2
source3
source4
source5
target1
target2
target3
target4
target5

(d) SAN

-60 -40 -20 0 20 40
-40

-30

-20

-10

0

10

20

30

(e) DAN

-40 -20 0 20 40 60
-40

-30

-20

-10

0

10

20

30

40

(f) RevGrad

-40 -20 0 20 40
-40

-30

-20

-10

0

10

20

30

40

(g) RTN

-50 0 50
-50

-40

-30

-20

-10

0

10

20

30

40
source
target

(h) SAN

Figure: The t-SNE visualization of DAN, RevGrad, RTN, and SAN.

School of Software - Tsinghua University - China National Engineering Lab for Big Data Software Mail: caozhangjie14@gmail.com

https://github.com/thuml/SAN

