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Summary

I Partial transfer learning: Deep learning across domains with
different label spaces Cs ⊃ Ct

I Two main challenges:
I Positive transfer across domains in shared label space PCt 6= QCt
I Negative transfer across domains in outlier label space PCs\Ct 6= QCt

I State-of-the-art results on partial transfer learning datasets.

I Main contributions:
I Propose a multi-adversarial networks architecture to enable class-wise

domain distribution matching;
I Develop a weighting mechanism with instance and class level weight to

avoid negative transfer.

I Code available @ https://github.com/thuml/SAN

Partial Transfer Learning

I Deep learning across domains with different label spaces
Cs ⊃ Ct

I Positive transfer across domains in shared label space PCt 6= QCt
I Negative transfer across domains in outlier label space
PCs\Ct 6= QCt
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Partial Transfer Learning: How?

Song et al. Kernel Embeddings of Conditional Distributions. IEEE, 2013. 
Goodfellow et al. Generative Adversarial Networks. NIPS 2014.
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embeddings of a joint distribution ( , )P X Y  and the product of its 
marginals ( ) ( ),P X P Y  i.e., hsic ( , ) : .X Y C F FXY X Y

27n n= - 7  
Similarly, this statistic also has advantages over the kde-based 
statistic. We will further discuss these tests in the next section, 
following our introduction of finite sample estimates of the 
distribution embeddings and test statistics.

FINITE SAMPLE KERNEL ESTIMATOR
While we rarely have access to the true underlying distribution, 

( ),P X  we can readily estimate its embedding using a finite sample 
average. Given a sample { , , }D x xX m1 f=  of size m drawn inde-
pendent and identically distributed (i.i.d.) from ( ),P X  the empiri-
cal kernel embedding is

 ( ) .m x1
X i
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m

1
n z=

=

t /  (4)

See Figure 3 for an illustration of the kernel embedding and its 
empirical estimator. This empirical estimate converges to its pop-
ulation counterpart in RKHS norm, ,FX Xn n-t  with a rate of 

( )O m ( / )
p

1 2-  [15], [16]. We note that this rate is independent of the 
dimension of ,X  meaning that statistics based on kernel embed-
dings circumvent the curse of dimensionality.

Kernel embeddings of joint distributions inherit the 
previous two properties of general embeddings: injectivity 

and easy empirical estimation. Given 
m pairs of training examples DXY = 
{( , ), , ( , )}x y x ym m1 1 f  drawn i.i.d. from 

( , ),P X Y  the covariance operator CXY  
can then be estimated as

 ( ) ( ) .C m x y1
XY i i
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See Figure 4 for an illustration of the 
kernel joint embedding and its empirical 
estimator.

By virtue of the kernel trick, most of 
the computation required for statistical 
inference using kernel embeddings can 
be reduced to the Gram matrix manipu-
lation. The entries in the Gram matrix K  
correspond to the kernel value between 
data points xi and ,x j  i.e., ( , ),K k x xij i j=  
and therefore its size is determined by 
the number of data points in the sample 
(similarly Gram matrix G has entries 

( , )) .G k y yij i j=  The size of the Gram 
matrices is in general much smaller than 
the dimension of the feature spaces 
(which can be infinite). This enables effi-
cient nonparametric methods using the 
kernel embedding representation. For 
instance, the empirical mmd can be com-
puted using kernel evaluations,
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For comparison, the L2 distance between kernel density esti-
mates is

kde kde( ( ) ( ))x x dx2-
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u/ , respectively. Furthermore, it can be shown that a 

two-sample test based on the L2 distance between kernel density 
estimates has less power against local departures from the null 
hypothesis than the mmd\  [19, Sec. 3.3], [19, Sec. 5], due to the 
shrinking kernel bandwidth with increasing sample size. There 
are also many domains such as strings and graphs [13] where 
kernel methods can be used, but where probability densities may 
not be defined. Finally, hyperparameters of the kernel func-
tions, such as the bandwidth v in the Gaussian kernel 

v( ),exp x x 2-- l  can be chosen to maximize the test power, 
and minimize the probability of Type II error in two-sample tests 

[FIG3] Kernel embedding of a distribution and finite sample estimate.
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[FIG4] Kernel embedding of a joint distribution and finite sample estimate.
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Selective Adversarial Networks
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I f = Gf (x): feature extractor
I ŷ: predicted data label
I d̂: predicted domain label

I Gy , Ly : label predictor and loss
I G k

d , Lkd : domain discriminator
I GRL: gradient reversal layer

Weighting Mechanism and Loss

I Instance Weighting (IW): probability-weighted loss for G k
d , k = 1, . . . , |Cs|.

Class Weighting (CW): down-weigh G k
d , k = 1, . . . , |Cs| for outlier classes
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I Entropy (uncertainty) minimization: H (Gy (Gf (xi))) = −∑|Cs|k=1 ŷ
k
i log ŷ ki
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Experimental Results

Table: Accuracy (%) of partial transfer learning tasks on Office-31

Method
Office-31

A 31 → W 10 D 31 → W 10 W 31 → D 10 A 31 → D 10 D 31 → A 10 W 31 → A 10 Avg

AlexNet 58.51 95.05 98.08 71.23 70.6 67.74 76.87
DAN 56.52 71.86 86.78 51.86 50.42 52.29 61.62

RevGrad 49.49 93.55 90.44 49.68 46.72 48.81 63.11
RTN 66.78 86.77 99.36 70.06 73.52 76.41 78.82

ADDA 70.68 96.44 98.65 72.90 74.26 75.56 81.42

SAN-selective 71.51 98.31 100.00 78.34 77.87 76.32 83.73
SAN-entropy 74.61 98.31 100.00 80.29 78.39 82.25 85.64

SAN 80.02 98.64 100.00 81.28 80.58 83.09 87.27

Table: Accuracy (%) of partial transfer learning tasks on Caltech-Office and
ImageNet-Caltech

Method
Caltech-Office ImageNet-Caltech

C 256 → W 10 C 256 → A 10 C 256 → D 10 Avg I 1000 → C 84 C 256 → I 84 Avg

AlexNet 58.44 76.64 65.86 66.98 52.37 47.35 49.86
DAN 42.37 70.75 47.04 53.39 54.21 52.03 53.12

RevGrad 54.57 72.86 57.96 61.80 51.34 47.02 49.18
RTN 71.02 81.32 62.35 71.56 63.69 50.45 57.07

ADDA 73.66 78.35 74.80 75.60 64.20 51.55 57.88

SAN-selective 76.44 81.63 80.25 79.44 66.78 51.25 59.02
SAN-entropy 72.54 78.95 76.43 75.97 55.27 52.31 53.79

SAN 88.33 83.82 85.35 85.83 68.45 55.61 62.03
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Figure: Empirical analysis: (a) Accuracy by varying #target domain classes; (b)
Target test error.
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Figure: The t-SNE visualization of DAN, RevGrad, RTN, and SAN.
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