

Partial Transfer Learning with Selective Adversarial Networks

Zhangjie Cao[†], Mingsheng Long[†], Jianmin Wang[†], and Michael I. Jordan[‡]

[†]KLiss, MOE; NEL-BDS; TNList; School of Software, Tsinghua University, China University of California, Berkeley, Berkeley, USA

Summary

- Partial transfer learning: Deep learning across domains with different label spaces $C_s \supset C_t$
- ► Two main challenges:
 - ▶ Positive transfer across domains in shared label space $P_{C_t} \neq Q_{C_t}$
 - Negative transfer across domains in outlier label space $P_{\mathcal{C}_s \setminus \mathcal{C}_t} \neq Q_{\mathcal{C}_t}$
- State-of-the-art results on partial transfer learning datasets.
- Main contributions:
 - Propose a multi-adversarial networks architecture to enable class-wise domain distribution matching;
- Develop a weighting mechanism with instance and class level weight to avoid negative transfer.
- ► Code available @ https://github.com/thuml/SAN

Partial Transfer Learning

- Deep learning across domains with different label spaces $\mathcal{C}_s\supset\mathcal{C}_t$
- Positive transfer across domains in shared label space $P_{\mathcal{C}_t} \neq Q_{\mathcal{C}_t}$
- Negative transfer across domains in outlier label space $P_{\mathcal{C}_s \setminus \mathcal{C}_t}
 eq Q_{\mathcal{C}_t}$

Partial Transfer Learning: How?

Kernel Embedding

Adversarial Learning

Selective Adversarial Networks

- $\mathbf{f} = G_f(\mathbf{x})$: feature extractor
- \triangleright $\hat{\mathbf{y}}$: predicted data label
- ▶ d: predicted domain label
- $ightharpoonup G_y$, L_y : label predictor and loss
- $ightharpoonup G_d^k$, L_d^k : domain discriminator
- ► GRL: gradient reversal layer

Weighting Mechanism and Loss

▶ Instance Weighting (IW): probability-weighted loss for G_d^k , $k = 1, ..., |C_s|$. Class Weighting (CW): down-weigh $G_d^k, k = 1, \ldots, |\mathcal{C}_s|$ for outlier classes

$$L_{d} = \frac{1}{n_{s} + n_{t}} \sum_{k=1}^{|\mathcal{C}_{s}|} \left\{ \left(\frac{1}{n_{t}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{t}} \hat{y}_{i}^{k} \right) \times \left(\sum_{\mathbf{x}_{i} \in (\mathcal{D}_{s} \cup \mathcal{D}_{t})} \hat{y}_{i}^{k} L_{d}^{k} \left(G_{d}^{k} \left(G_{f} \left(\mathbf{x}_{i} \right) \right), d_{i} \right) \right) \right\}$$

$$(1)$$

▶ Entropy (uncertainty) minimization: $H(G_y(G_f(\mathbf{x}_i))) = -\sum_{k=1}^{|C_s|} \hat{y}_i^k \log \hat{y}_i^k$

$$E = \frac{1}{n_t} \sum_{\mathbf{x}_i \in \mathcal{D}_t} H\left(G_y\left(G_f\left(\mathbf{x}_i\right)\right)\right) \tag{2}$$

Overall Loss C $C\left(\theta_f, \theta_y, \theta_d^k|_{k=1}^{|\mathcal{C}_s|}\right) = \frac{1}{n_s} \sum_{i=1}^{n_s} L_y\left(G_y\left(G_f\left(\mathbf{x}_i\right)\right), y_i\right) + \frac{1}{n_s} \sum_{i=1}^{n_s} H\left(G_y\left(G_f\left(\mathbf{x}_i\right)\right)\right)$

$$-rac{1}{n_s+n_t}\sum_{k=1}^{|\mathcal{C}_s|}\left\{\left(rac{1}{n_t}\sum_{\mathbf{x}_i\in\mathcal{D}_t}\hat{y}_i^k
ight) imes
ight.$$

$$\left(\sum_{\mathbf{x}_{i}\in\left(\mathcal{D}_{s}\cup\mathcal{D}_{t}\right)}\hat{y}_{i}^{k}L_{d}^{k}\left(G_{d}^{k}\left(G_{f}\left(\mathbf{x}_{i}\right)\right),d_{i}\right)\right)\right\}$$

$$(\hat{ heta}_f, \hat{ heta}_y) = rg\min_{ heta_f, heta_y} C\left(heta_f, heta_y, heta_d^k|_{k=1}^{|\mathcal{C}_s|}
ight)$$

$$(\hat{\theta}_{f}, \hat{\theta}_{y}) = \arg\min_{\theta_{f}, \theta_{y}} C\left(\theta_{f}, \theta_{y}, \theta_{d}^{k}|_{k=1}^{|\mathcal{C}_{s}|}\right)$$

$$(\hat{\theta}_{d}^{1}, ..., \hat{\theta}_{d}^{|\mathcal{C}_{s}|}) = \arg\max_{\theta_{d}^{1}, ..., \theta_{d}^{|\mathcal{C}_{s}|}} C\left(\theta_{f}, \theta_{y}, \theta_{d}^{k}|_{k=1}^{|\mathcal{C}_{s}|}\right)$$

$$(4)$$

(3)

Experimental Results

Table: Accuracy (%) of partial transfer learning tasks on *Office-31*

Method	Office-31									
	A 31 \rightarrow W 10	$D 31 \rightarrow W 10$	W 31 \rightarrow D 10	A 31 \rightarrow D 10	$D \ 31 \to A \ 10$	W 31 \rightarrow A 10	Avg			
AlexNet	58.51	95.05	98.08	71.23	70.6	67.74	76.87			
DAN	56.52	71.86	86.78	51.86	50.42	52.29	61.62			
RevGrad	49.49	93.55	90.44	49.68	46.72	48.81	63.11			
RTN	66.78	86.77	99.36	70.06	73.52	76.41	78.82			
ADDA	70.68	96.44	98.65	72.90	74.26	75.56	81.42			
SAN-selective	71.51	98.31	100.00	78.34	77.87	76.32	83.73			
SAN-entropy	74.61	98.31	100.00	80.29	78.39	82.25	85.64			
SAN	80.02	98.64	100.00	81.28	80.58	83.09	87.27			

Table: Accuracy (%) of partial transfer learning tasks on Caltech-Office and ImageNet-Caltech

Method		Caltech-Off	ImageNet-Caltech				
	C 256 \rightarrow W 10	$C\ 256 o A\ 10$	$C\ 256 \to D\ 10$	Avg	I 1000 → C 84	$C\ 256 \to I\ 84$	Avg
AlexNet	58.44	76.64	65.86	66.98	52.37	47.35	49.86
DAN	42.37	70.75	47.04	53.39	54.21	52.03	53.12
RevGrad	54.57	72.86	57.96	61.80	51.34	47.02	49.18
RTN	71.02	81.32	62.35	71.56	63.69	50.45	57.07
ADDA	73.66	78.35	74.80	75.60	64.20	51.55	57.88
SAN-selective	76.44	81.63	80.25	79.44	66.78	51.25	59.02
SAN-entropy	72.54	78.95	76.43	75.97	55.27	52.31	53.79
SAN	88.33	83.82	85.35	85.83	68.45	55.61	62.03

Figure: Empirical analysis: (a) Accuracy by varying #target domain classes; (b) Target test error.

Mail: caozhangjie14@gmail.com